Modeling and Simulation of Heterogeneous Systems

Joachim Haase and Peter Schwarz

Contents

1. Description of Terminal Behavior
2. Different Description Methods
3. Modeling based on FEM
4. Conclusion
Description of Terminal Behavior

Heterogenous System (Principle)

Different physical domains

electrical subsystems

...
Heterogenous System (Principle)

Different description methods
Objective

- Simulation of complex systems
- Formulation of mathematical description as DAE-system
 \[F(x, \dot{x}, p, t) = 0 \]
- Usage of existing simulation programs (Saber, ELDO, ...)
- Reusability of models
- Better understanding
Description of Terminal Behavior

Method

- Manual partitioning into subsystems

- Formulation of the terminal behavior of subsystems in a general mathematical form

- Implementation of the models with description languages like Mast, HDL-A, VHDL-AMS, Modelica, ...
Description of Terminal Behavior

Terminals of subsystems

flow quantity i
across quantity v
reference node

conservative pin
non-conservative pin
Description of the terminal behavior

- Division into dependent and independent terminal signals (i_1, v_2, a_{out} resp. v_1, i_2, a_{in})
- Usage of additional internal signal s

\[
i_1 = f_1(v_1, \dot{v}_1, i_2, \dot{i}_2, a_{in}, \dot{a}_{in}, s, \dot{s}, p, t)\]
\[
v_2 = f_2(v_1, \dot{v}_1, i_2, \dot{i}_2, a_{in}, \dot{a}_{in}, s, \dot{s}, p, t)\]
\[
a_{out} = f_3(v_1, \dot{v}_1, i_2, \dot{i}_2, a_{in}, \dot{a}_{in}, s, \dot{s}, p, t)\]
\[
0 = f_4(v_1, \dot{v}_1, i_2, \dot{i}_2, a_{in}, \dot{a}_{in}, s, \dot{s}, p, t)\]

signal values at t

p parameters

t time
Description of Terminal Behavior

General formulation

\[d(t) = f_1 (u|t, s|t, p) \]
\[0 = f_2 (u|t, s|t, p) \]

- dependent terminal signal
- independent terminal signals
- parameters
- additional internal signals

\[x : T \rightarrow \mathbb{R}^n \]
\[x|t \quad \text{signal x until t} \]
Description methods
• Network models
• Control system blocks
• Bondgraphs

Derivation of terminal behavior
• Modeling methods based on System Theory
 - nonlinear static subsystems (RBF)
 - linear dynamic subsystems (recursive convolution)
• Physically based methods
 - analytically given methods
 - FEM-based methods

[Simulator coupling]
Network with different terminal types

Diode with selfheating effects

\[\begin{align*}
 i_p &= i_D \\
 i_n &= -i_D \\
 i_T &= -(v_p - v_n) \cdot i_D
\end{align*} \]

with

\[
 i_D = I(v_T) \cdot \left(\frac{q \cdot \frac{v_p - v_n}{v_T}}{n \cdot k} \cdot e^{\frac{v_p - v_n}{v_T}} - 1 \right)
\]

\(p, n \) electrical terminals
flow quantities - currents \(i_p, i_n \)
across quantities - voltages \(v_p, v_n \)

\(T \) thermal pin
flow quantity- heat flow \(i_T \)

HDL-A Modell

ENTITY dio IS
 GENERIC (IST0, T0, Pt, n, Eg, Rs : REAL);
 PIN (p, n, T : ELECTRICAL; T : THERMAL);
END ENTITY dio;

ARCHITECTURE selfheating OF dio IS
 ...
END ARCHITECTURE selfheating;
CONTROL SYSTEM BLOCK

ENTITY PT1 IS
 GENERIC (K: REAL;
 T: REAL);
 PIN (I, O: NKN);
END ENTITY PT1;

ARCHITECTURE rt OF PT1 IS
 STATE S: ANALOG;
BEGIN
 RELATION
 PROCEDURAL FOR INIT =>
 K := 1.0;
 T := 1.0;
 PROCEDURAL FOR DC =>
 0.a := S;
 EQUATION (S) FOR DC =>
 0.0 == S - K*I.a;
 PROCEDURAL FOR TRANSIENT, AC =>
 0.a := S;
 EQUATION (S) FOR TRANSIENT, AC =>
 0.0 == T*ddt(Ua) + Ua - K*I.a;
 END RELATION;
END ARCHITECTURE rt;

Possibility to use control blocks together with networks.

Control system block

\[\frac{K}{pT + 1} \]

\[i \quad \rightarrow \quad o \]

\[a_0 = s \]

\[0 = T \frac{ds}{dt} + s - K \cdot a_i \]
Different Description Methods

Bondgraph

R-bond

nonconservative terminals

input terminals

Series junction

\[
a_e = R \cdot a_f
\]

\[
a_f = \frac{1}{R} \cdot a_e
\]

\[
a_{f1} = s
\]

\[
a_{f2} = s
\]

\[
a_{f3} = s
\]

\[
0 = a_{e1} - a_{e2} - a_{e3}
\]
Nonlinear static subsystem

Approximation with radial basis function from given data points

\[F(x) = \sum_{i=1}^{m} a_i \varphi(\|x - x_i\|) + \sum_{j=1}^{d} b_j x_j + b_0 \]

- \(F: \mathbb{R}^d \rightarrow \mathbb{R} \)
- \(\varphi \) is a given radial basis function (like \(\psi(r) = \sqrt{r^2 + c^2} \))
- \(a_i \) and \(b_i \) are determined from given data points
- \(m \) is less equal to the number of given data points
- an affin norm is used \(\|u\|_X^2 = m \cdot u^T V^TV^{-1} u \)
- Taylor series expansion if \(x = x_a + \Delta x \) near to the last argument \(x_a \)

Dew point sensor (example from S. Parodat: MARABU. Proc. Entwurf von Mikrosystemen, Dezember. 1997)
Usage of recursive convolution

- approximation of the characteristic function \(g(t) \) as a sum of exp-functions and \(\delta \)-terms interval by interval

\[
g_j(t) = v \cdot \text{Re}\left(\sum_{i=1}^{m} \alpha_i \cdot e^{\beta_i \cdot t} + k \cdot \delta(t - t) \right) \quad \text{for } t_{uj} \leq t < t_{oj}
\]

with \(v, k \in \mathbb{R} \) and \(\alpha_i, \beta_i \in \mathbb{C} \)

\[
g(t) = \sum_{j=1}^{n} g_j(t)
\]

- solution of the convolution \(a(t) = \int_{0}^{t} g(t - \tau) \cdot e(\tau) \, d\tau \)

by a recursive formulation

\[
a(t_n) = f(a(t_{n-1}), e(t_n), e(t_{n-1}))
\]
From FEM to network models

Energy: \(W = \ldots + W_i(v, \ldots) + W_j(v, \ldots) + W_k(v, \ldots) + \ldots \)

Minimum: \(\frac{\partial W}{\partial v} = \frac{\partial W_i}{\partial v} + \frac{\partial W_j}{\partial v} + \frac{\partial W_k}{\partial v} = 0 \) (KCL)
Simple beam

potential energy = deformation energy - energy of external forces

\[
W = \frac{1}{2} \int \int \int_V \sigma^T \varepsilon dV - E_1 v_{|1} - E_2 v_{|2}
\]

\[
\frac{\partial W}{\partial v_{|1}} = -\frac{E \cdot A}{L} (v_{|2} - v_{|1}) + E_{|1}
\]

\[
\frac{\partial W}{\partial v_{|2}} = -\frac{E \cdot A}{L} (v_{|1} - v_{|2}) + E_{|2}
\]
Framework

Principle:

Description of simple beam by 6-pol

netlist

* fixed points
v7 v20 0 0.0
v8 w20 0 0.0

* forces
i1 w7 0 -30.0
i2 w8 0 -30.0

Fixing of points by „voltage“ sources

Modeling of forces by „current“ sources
Micromechanical sensor

Inclusion of dynamic effects

\[
\begin{bmatrix}
F \\
T
\end{bmatrix} = -\left(\begin{bmatrix}
M \\
\end{bmatrix} \cdot \begin{bmatrix}
\ddot{\varphi} \\
\dot{\varphi}
\end{bmatrix} + D \cdot \begin{bmatrix}
\dot{\varphi} \\
\dot{\varphi}
\end{bmatrix} + S \cdot \begin{bmatrix}
\varphi
\end{bmatrix} \right)
\]

mass matrix

damp matrix

stiffness matrix

displacements

distortions

torques

excitation with force (components into all directions)
Modeling based on FEM

Inclusion of geometric nonlinearities

height 3 µm
width 15 µm
length 500 µm
density 2326 kg/m³
E-module 1,302 10^{11} N/m²
shear module 79,62 10^9 N/m²

transfer characteristic

matrixes depend on displacements

\[
\begin{bmatrix}
F \\
T
\end{bmatrix} = -\left(M(v) \cdot \begin{bmatrix} \dot{v} \\\n\phi \end{bmatrix} + D(v) \cdot \begin{bmatrix} \ddot{v} \\
\ddot{\phi} \end{bmatrix} + S(v) \cdot \begin{bmatrix} v \\
\phi \end{bmatrix} \right)
\]
Conclusion

- Terminal behavior as basis for system simulation

- Unified approach to describe of the terminal behavior and its application to different description methods

- Derivation of the description of the terminal behavior using FEM-methods